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LOCAL CONVERGENCE THEORY 
OF INEXACT NEWTON METHODS 

BASED ON STRUCTURED LEAST CHANGE UPDATES 

JOSIt MARIO MARTINEZ 

ABSTRACT. In this paper we introduce a local convergence theory for Least 
Change Secant Update methods. This theory includes most known methods of 
this class, as well as some new interesting quasi-Newton methods. Further, we 
prove that this class of LCSU updates may be used to generate iterative linear 
methods to solve the Newton linear equation in the Inexact-Newton context. 
Convergence at a q-superlinear rate (or at an "ideal" linear rate, in the sense 
of Dennis-Walker) of the Inexact Newton methods generated in this way is 
proved, independently of the number of iterations used in the linear iterative 
subalgorithm. We apply the new theory to some particular methods. 

1. INTRODUCTION 

The problem we study is the following: Given F: Q c R n 
- R , F = 

(t1 ...,ftn)T e C1 (Q), and J(x) = F'(x), find x E Q satisfying 

(1.1) F(x) = O. 

The most popular method for solving this type of problem is Newton's 
method [13, 35, 40]. This is an iterative method which, starting from an arbi- 
trary x? E Q, computes the successive approximations xk of the solution of 
(1.1) according to 

(1.2) x = xk -J(xk) -1F(xk) 
Hence, during each iteration of Newton's method, (a) the Jacobian matrix 
J(xk) must be calculated, and (b) the linear n x n system 

(1.3) J(x )z = -F(x 

must be solved, in order to obtain xk+l 
Newton's method has excellent local convergence properties (see [13, 35, 40]). 

This fact motivated many people in the last 25 years to introduce methods with 
similar local convergence properties, but which are less expensive, in the sense 
that either the task (a), the task (b), or both, are avoided. 
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There are situations where the Jacobian matrix J(xk) is easily available, 
but a direct method for obtaining z in (1.3) is very expensive in terms of 
time or storage. In these cases, Inexact Newton methods are recommended. 
At each iteration of an Inexact Newton method, equation (1.3) is solved only 
approximately, using some iterative algorithm for linear systems. 

Ortega and Rheinboldt [35] analyze the case where a fixed number of iter- 
ations of the linear iterative algorithm is used at each main iteration. They 
obtain linear convergence results under a suitable assumption on the spectral 
radius of the iteration matrix at the solution (see [35, Theorem 10.3.10]), and 
they make special reference to the use of the SOR method as inner iteration. 

Later, Dembo, Eisenstat, and Steihaug [7] studied the situation where an ap- 
proximate solution of (1.3) is considered without specifying the inner algorithm 
used to obtain it. They prove that if 

(1.4) ||J(xk)z+F(x)II?| I < kIF(x )II, ?< Ok < 0 < 1, k=0, 1,2,.... 

then local linear convergence is achieved, and convergence is superlinear if 
lim ok = 0. 

On the other hand, quasi-Newton methods [11, 13] were essentially devised 
to handle the situation where the derivatives of F are not available, or are 
difficult to calculate. They are based on the iteration formula 

(1.5) xk = x -Bk F(X) 

where Bk+1 is obtained from Bk using nonexpensive procedures which, in prin- 
ciple, do not involve derivatives. Alternatively, Ball may be obtained directly k+1 

from B' 1, or a suitable factorization of Bk+l may be obtained from the fac- kI 
torization of Bk (see [13, 16, 34]). Among many successful algorithms which 
were devised using the quasi-Newton idea, the best known are the first method 
of Broyden [2] (for small, unstructured problems), the BFGS method (see [1 3]) 
(for unconstrained minimization problems), the method of Dennis-Gay-Welsch 
[8, 13] (for nonlinear least squares), Schubert's method [3, 33, 39] (for large 
sparse nonlinear systems), and the Marwil-Toint sparse symmetric update [32, 
33, 41, 42]. All of them belong to a more restricted class of quasi-Newton meth- 
ods, the class of Least Change Secant Update methods (LCSU), analyzed in [12, 
13]. In general, these methods have local superlinear convergence properties, al- 
though some authors introduced methods that do not have such properties, and 
yet still seem to have potential usefulness [9, 29, 30]. In fact, Dennis and Mar- 
wil [9] were the first to introduce a method where the (sparse) LU factorization 
of Bk+l is obtained directly from the LU factorization of Bk . Their method is 
not locally convergent unless implemented with a convenient restart procedure. 
However, using their idea, Johnson and Austria [24], and Chadee [5] introduced 
superlinearly convergent direct secant update methods, and Martinez [31] intro- 
duced a family of quasi-Newton methods with direct secant updates of matrix 
factorizations with superlinear convergence properties. 
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Our strong belief that in many large problems the evaluation of analytic 
derivatives is easy but that secant methods may still be useful to save on linear 
algebra is also supported by some recent work on the application of secant 
methods to infinite-dimensional problems (see, for example, [18, 25, 38]). 

The motivation for this paper is the following: Consider the very frequent 
situation where the Jacobian matrix J(x) is not difficult to evaluate but the 
direct solution of (1.3) is prohibitively time- or memory-consuming. Surely, 
an Inexact Newton method should be a good choice for solving (1.1). Now, 
iterative linear methods for solving (1.3) may also be prohibitively slow unless 
implemented using a suitable preconditioning scheme. Our idea is to use LCSU 
matrices, and their generalizations, as preconditioners for an application of an 
Inexact Newton method. Of course, this idea would be of no advantage if we 
tried to use a "Schubert-type" formula, where the whole matrix Bk is updated, 
and then factored in order to obtain the quasi-Newton iteration. But it may be 
advantageous in large-scale problems if we use direct secant updates of matrix 
factorizations, or even if we use classical low-rank updates (see [13]) storing a 
limited number of "past updating vectors". 

In ?2 of this paper we introduce the main model algorithm, and we discuss 
some examples. In ?3 we prove the maih convergence results. In ?4 we prove 
convergence for the particular examples discussed in ?2, using the theory of ?3. 
Some conclusions are drawn in ?5. 

2. GENERAL DESCRIPTION OF THE METHODS AND EXAMPLES 

2.1. The main model algorithm. Let F: Q c Rn- Rn, F E C1(Q), Q an 
open set. 

Let X be a finite-dimensional linear space. For each x, z E Q, let (, z 
be a scalar product on X and 11 - .lx z its associated norm. 

I I will denote an arbitrary norm on Rn and its associated matrix norm 
throughout the paper. 

For all x, z E Q let V = V(x, z) be a linear manifold contained in X. 
For x, z E Q, E E X, let us call P,z(E) the orthogonal projection of E on 
V(x, z), related to the norm 11 I-lxzK. 

Let (o: Q2 x X -- Rnxn . The main model algorithm considered in this paper 
is described below. 

Algorithm 2.1. Let x be an arbitrary initial point, Eo E X. Given xk and 

Ek , we compute XQ, xk+ , and Ek+1 performing the following steps: 

Step 1. Compute the quasi-Newton point XQ: 

(2.1) z0=-(x k, Ek) F(xk), 

(2.2) ~~~~k k 
(2.2) XQ = X +Z0. 

Step 2. Compute the new parameter approximation: 

(2.3) Ek+ 1PXk Xk(Ek)- 
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Step 3. Obtain xk+1 such that 

(2.4) ixk+1 -xk 
k 

<| xk 

where xk is the Newton point, defined by 

(2.5) Xk Jxk (Xk)- F(Xk) 

A point x k+ which satisfies (2.4) may be obtained applying some linear 
iterative algorithm to equation ( 1.3). Every convergent linear iterative algorithm 
starting fromx k 

-xk produces, after a finite number of iterations, a point which 

satisfies (2.4), since Xk - x kis the exact solution of (1.3). However, this is not 
a practical observation, since we can compute only the residual of ( 1.3), and not 
the error, at each inner iteration. Fortunately, some linear iteration procedures 
have the property of decreasing the norm of the error monotonically, and, so, 
(2.4) is guaranteed using an arbitrary number of inner iterations. We mention 
below two of these procedures. 

Conjugate gradient inner iteration. Choose qk > 0. For 1 = 0, 1, .I. , qk - 1 
compute z1+1, the (1 + 1)st iteration of the Conjugate Gradient Method (see 
[1, 17, 23]) applied to the equation 

(2.6) o(xk , Ek+l)[J(x )z + F(x )]=0. 

If I I is the 2-norm in R {z1 } satisfies the monotonically decreasing error 
property 

(2.7) - J(x k)F(Xk)I < IzJ - j(Xk) F(x )I 

(see [1]). Therefore, xk+1 = xk + zq satisfies (2.4). 
Iterative refinement inner iteration. Choose qk > 0. For 1 = 0, 1, ..., qk - 

1, compute 

(2.8) z1+ = z, - (x k, Ek+l) -[J(xk) 1z + F(x )]k 

and set x k+1 xk + z 
We will prove in ?3 that under some starting conditions this procedure com- 

putes a point which satisfies (2.4), independently of the norm used. 

Remark. Observe that a "pure" quasi-Newton algorithm may be defined as 
a particular case of the inner iteration procedures by taking qk -= 0, k = 
0, 1,2,.... 

The usefulness of considering qk > 0 seems to be limited to situations where 
the computation of the linearization J(x k)z + F(x k) is cheaper than the com- 
putation of the residual F(xk + z) . In fact, if this is not the case, an algorithm 
based on 

Z1+l = k(X, Ek+l) F(xk + z1) 
instead of (2.8) is probably more efficient. Observe that an analogous comment 
applies to most Inexact Newton procedures, since the iterative methods used 
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to solve the Newtonian linear system usually compute the linearized residuals. 
Nevertheless, there are many problems for which the evaluation of F is much 
more expensive than the computation of J(x)z + F(x). Indeed, the cost of 
evaluating J, once F has been computed, is often negligible. 

The conditions under which Algorithm 2.1 is well defined and locally conver- 
gent are given in ?3. In this section we will exhibit several examples of methods 
which have the general form of the algorithms given above. 

2.2. Using an updated factorization of a simplified Jacobian. Many practical 
problems of type (1.1) have the following characteristics: 

(i) J is a large sparse matrix, but its LU (QR) factorization is not very 
sparse. 

(ii) Neglecting some coefficients of J, we obtain a simplified matrix N 
whose LU (QR) factorization is pleasantly sparse. 

(iii) N(x) "dominates" J(x) in a sense which will be made precise later 
(see (4.1)). 

(iv) J(x) is not difficult to compute. 

0sterby and Zlatev [36] implicitly analyzed this type of problem in the lin- 
ear case. In fact, they propose to solve linear systems with the characteristics 
(i)-(iii), dropping the small elements of the LU factorization of the coefficient 
matrix, and applying an iterative refinement procedure afterwards. The algo- 
rithm which we are going to introduce in this section may be viewed as a secant 
adaptation of their procedure for the nonlinear case. 

Let us now define precisely the type of problems we want to consider. We 
assume that: 

(a) For all x E.Q, J(x) =N(x) + C(x). 
(b) For all x E Q, N(x) = s(x) '(x), where (v(x), (x)) E S, a 

linear manifold contained in Rnxn x Rnxn 

Algorithm 2.2. Let x0 E Q be an arbitrary initial point, and let (AO RO) E S. 
For k = 0, 1, 2, ... , compute xk+1 and (Ak+l, Rk+l) as follows: 

Step 1. XQ= X -(Ak Rk) F(xk)- 

Step 2. Compute (Ak+l, Rk+l) as the solution of the problem: 

minimize IIA - AkI1 + ||R - RkI11 
s.t. (A, R) eS, 

Rs - Ay = 0 
k k Xk)S S XQ - X , y=N(x )s. 

Step 3. Choose qk > 0. Compute xk+1 satisfying (2.4), using some linear 
iterative procedure, and 

fp(x, (A, R)) = A R. 
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For this algorithm, we define: 

X=Rnxn XRnnxn 

II(A, R) 12Z = II(A, R)112 = IIAIIF + IIRIIF. for all x, z E Q, 
V(x, z) = sn {(A, R) E XIR(z - x) - AN(x)(z -x) = O}. 

Therefore, Algorithm 2.2 is a particular case of Algorithm 2.1. 

Example. Suppose that the structure of N(x) is block-angular (see [ 15]) consist- 
ing of (say) k1 rectangular ml x n1 "small" blocks (mi < nl) and a "master" 
m2 X n block, so that kl 1 + m2 = n. The configuration is depicted below: 

nl 

N(x)= 
nl 

m2 

n 

Let X (x) be a lower triangular n x n matrix, and M(x) an orthogonal n x n 
matrix such that 

_V(x) N(x) = M (x) 

Both XV(x) and M(x) have a block-angular structure and may be calculated 
by standard procedures using O(k1 mInI + m2mI n + m2n) flops (see [17, ?6.2]). 
Now, the calculation of N(x)s involves k1mInI + m2n flops, and the solution 
of the optimization problem at Step 2 uses O(k1 mI nI + m2n) flops (see [31]). 
Therefore, the computation of Ak+l, Rk+l using Algorithm 2.2 is, roughly, ml 
times less expensive than the factorization of N(x). Similar considerations 
would apply if we were to use the LU factorization of N(x)T. 

Remark. The definition of y at Step 2 of Algorithm 2.2 may be replaced by 
some finite difference scheme (see [13, Chapter 1 1]), but this replacement is not 
advantageous if N(x) is only mildly nonlinear. If C(x) = 0 for all x E Q, 
Algorithm 2.2 represents the family of quasi-Newton methods with direct secant 
updates of matrix factorizations, introduced in [31]. In this case, we may define 
y = F(xQ) - F(xk). Some of the best-known least change secant methods for 
solving systems of nonlinear equations, such as the first and second methods 
of Broyden, Schubert's method, Powell's symmetric method, the sparse PSB 
method of Marwil-Toint, the Johnson-Austria method and Chadee's method, 
belong to this family. 

2.3. Partitioned quasi-Newton methods. Griewank and Toint [19-22] intro- 
duced the family of Partitioned Quasi-Newton Methods for solving some classes 
of large-scale optimization problems or nonlinear systems of equations. We 
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will analyze here the application to nonlinear systems of equations described by 
Toint [43]. 

Let us assume that 

F(x) = F (x) + * + Fm(x) 

where, for each i = 1, ... , m, there exist matrices Ui E R nX mi and Wi E 

RniXn such that Fi(x) = UiGGi((Wix) for a certain C1 -function Gi: Rni Rmi. 

Therefore, 

Fi(x) = UiG(Wix) W> 

Problems of this type arise in the application of the finite element method to 
boundary value problems. In these cases, F(x) is decomposed into a sum of 
functions related to each element of the discretization (see [43]), and the range 
and domain of an element function Fi have low dimension. The columns of 
Ui span the range of each F. and the rows of WJ span its domain, for all 
values of the variables. 

With these hypotheses, Toint's partitioned quasi-Newton method may be 
described as follows: 

Algorithm 2.3. Let x? E l and B E Rmi x,i i =1, m, be arbitrary 
initializations. For k = 0, 1, 2, ..., compute xk+l and B k+1 by performing 
the following steps: 

Step 1 (New point): 

k+ =Xk- UiBi Wi F(x ) 

Step 2 (Updating): For i = 1, ..., m define 

k+1 k k+1 k 
y~F1(x )F1(x), =x - 

and let B k+1 be the solution of 

minimize lB - BB k 
IF 

s.t. UiBWis=Yi. 
For this algorithm, we define 

X = { (Bi ,Bm) iBi E R' }, 

jj.jj'ZJJ.JJ forallx,z, 

II(B1 , ... BM) = 2= JIB + + IIBMIl2 
m 

((x, (Bi,..., Bm)) = UiBiW 
i-l 

and 

V(x, z)= {(B1, ..., BM) EXIUiBiJJ(z-x) =Fi(z)-Fi(x), i=1,..., m} 
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Remark. The computational effort involved in Step 1 of Algorithm 2.3 is the 
same as that associated with the solution of a linear system which must be car- 
ried out at each iteration of Newton's method. Therefore, if the derivatives of 
F are easily available, Newton's method should be more efficient than Algo- 
rithm 2.3, because of its quadratic order of convergence. Hence, Algorithm 2.3 
is interesting only if F'(x) is not available, or very difficult to calculate. For 
this reason, the inner iteration step is not used in this algorithm, and we defined 
it setting qk- 0. The same observation applies to Schubert's method, as was 
mentioned in the Introduction, as well as to Algorithm 2.4 defined below. 

2.4. Secant augmentations of the Gauss-Newton method. Let us consider the 
Nonlinear Least Squares problem (see [13]): 

minimize XERn 2 Er i(X)2. 
i= 1 

This problem may be thought of as a system of nonlinear equations, writing 

(2.9) R(x) = (rl(x), ... , rQ(x)) , F(x) = R' (x) R(x). 

Hence 
m 

(2.10) J(x) = R / (x) TR (x) + E r1(x)V2ri(x) . 
i=l1 

Unlike the first term, the second term in (2.10) is difficult to compute, so 
it is sometimes neglected, as in the classical Gauss-Newton Method, or re- 
placed by a diagonal matrix, as in the Levenberg-Marquardt method [13, 27, 
28]. Dennis, Gay, and Welsch [8] proposed to replace it by a weighted secant 
approximation, introducing a DFP type update. Later, Dennis and Walker [ 14] 
proposed a BFGS type update formula for the difference between J(x) 1 and 

[R'(x) TR(x)] . Both methods are particular cases of the Model Algorithm 
2.1. Let us describe the last one. 

Algorithm 2.4. Let x0 E Q and Eo be an arbitrary symmetric initial matrix. 
For k = 0, 1, 2, ..., compute xk+l, Ek+l by performing the following steps: 

Step 1 (New point): 

xk = x -{[R (x ) R/(xk)] + Ek }R(Xk) TR(x k) 

Step 2 (Updating): Let G be a symmetric positive definite matrix such that 

(2.11) Gs=y, s=xk+ -xk , y=F(x k+)-F(xk) 
T 

Set G = LL , the Cholesky factorization of G. We define Ek+l to be the 
solution of 

minimize IL T(E - Ek)LIIF 
(2.12) s.t. E symmetric, 

Ey = s-[R (Xk+ I) R(xk+ )] y 
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Let us develop a closed formula for the solution of (2.12). Writing H = 

L TEL and Hk = LTEkL, we may express (2.12) as: 

minimize IIH - HkIIF 

(2.13) s.t. H symmetric 
HL y =LTs-LT[R(x k+)TR(x k+)1Iy 

Using the symmetric PSB formula [13, pp. 195-198; 37], we see that the 
solution of (2.13) is 

Hk+l =Hk+ (s-Hky)y + y(s-Hky) _(s-Hky) T - k+l k j Ty (T j)2 

with L- Iy, 5 L s ,s = s-[R(xk+ ) R/(x )] y. 
Thus, 

LTE+L LTE L + L (s - Eky)YTL T + L ly(s# - Eky)TL 

s y 

(S# _Eky)TyL_ YYT L 
- 

(STY)2 

-T1 But, by (2.1 1), we have that L UL y = s. Therefore, 

E-Ek4 (s# - Eky)sT + s(s# - Eky)T 
k+1 k+ Ty 

(2.14) (s -Eky) TyssT 

(STy)2 

So, Ek+j does not depend on the particular matrix chosen in (2.1 1). That 
is, we may use formula (2.14) as the definition of Ek+l, instead of (2.12). 

For this algorithm, we define X = RnXn . For each x, z E Q2, we define 
IIEIIX,z = IILT(x, z)EL(x, z)IIF, where L(x, z)L(x, z)T is the Cholesky fac- 
torization of 

G = j (x + t(z - x)) dt. 

It is easy to verify that jj . IL, z is associated with a scalar product in X. 
Finally, 

p9(x, E) = {[R' (x) TR (x)f' + E}, 

and 

V(x, z) = Sn{E E XIE[F(z)-F(x)] = z-x-[R' (z) TR'(z) 1 [F(Z)-F(x) 

where S is the subspace of symmetric matrices of R Xfl 

As in Algorithm 2.3, the linear algebra calculations involved in the computa- 
tion of an iteration of Algorithm 2.4 are the same as those involved in a Newton 
iteration. Therefore, if second derivatives of R are available, Newton's method 
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should be more efficient. For this reason, we also defined this algorithm without 
the inner iteration step. 

Using similar arguments, we may verify that the BFGS and the DFP algo- 
rithms for unconstrained minimization (see [12, 13]) are also particular cases 
of Algorithm 2.1. 

3. MAIN CONVERGENCE RESULTS 

In this section we prove a local convergence theorem for Algorithm 2.1. We 
use some basic assumptions for achieving the main results. The first assumption 
concerns the function F. 

Assumption 1. Let Q be an open, convex, and bounded set. Let x* E Q be 
such that F(x*) = 0 and J(x*) is nonsingular. We will assume that there exist 
p, M > O such that, for all x E Q, 

(3.1) jJ(x)-J(x* )I<Mix-x *IP. 

Hence, by [4, Lemma 3.1], we have that, for all x, z E Q 

(3.2) IF(z) - F(x) - J(x*)(z - x)I < Mjz - xlI(x, z)p, 

where 
a(x, z) = max{jx - x*I, jz - x*I}. 

The second assumption concerns the function (o. 

Assumption 2. There exists E* E X such that q is continuous in a neighbor- 
hood of (x*, E*), 9(x*, E*) is nonsingular, and 

(3.3) II - qp(x*, E*) J(x*)l < r < 1. 

We will assume, without loss of generality, that (o(x, E) is nonsingular for 
all (x, E) on its domain. 

From now on, jj . jj will denote a norm on X associated with the scalar 
product (, ), 

Theorem 3.1. Let F satisfy Assumption 1, let (p satisfy Assumption 2, and let 
r E (r*, 1). Then there exist bounded neighborhoods Ql and X of x* and 
E*, respectively, such that, for all x E Ql, E e X, I o(x, E)-11 and IIEII are 
uniformly bounded, and 

(3.4) lx - (p(x, E) lF(x) - xI1 < r1x - x1. 
Proof. The uniform boundedness of h Ell, 1kv(x, E)I , and I9)(x, E) lI follows 
from the continuity of 9) on suitable compact neighborhoods of x* and E*. 

Now, 

Ix-(x, E) F(x)-x I < Ix-+(p(x, E*)- F(x) - lFx)I 
+ j(p(x, E) - (p(x* ,E*) lFx 
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But, by (3.2) and (3.3), 

Ix - O(x*, E*) F(x) - x*1 

< Ix - V(x, E*) lJ(x*)(x - x*) - x*I 
(3.6) + ko(x*, E*) 'Il[F(x) - J(x*)(x - x*)]I 

? [I - q (x* ,E) 1J(x*)](x -x*)i+kp(x*,E*y)MlxMi-xx*P+l 

? [r* + q((x*, E*) 1jIMx - x* lp]lx - x* . 

Moreover, by (3.2), 

(3.7) IF(x)I < IJ(x*)(x - x*)l + Mix - x IP+1 

< (IJ(x *)I+Mix- *IP)Ix-x x*I. 
Hence, the desired result follows in a straightforward way from (3.5), (3.6), and 

(3.7). o 

From now on, we will denote Ql by Q2 in order to simplify our notation. 
The third crucial assumption states that the manifolds V(x, z) are close 

enough to E*. 

Assumption 3. Assume that, for all x, z E Q, there exists E E V(x, z) such 
that 

(3.8) IIE - E11 < c2a(x, z)p, 

where p is defined by (3.1) and c2 > 0. 

The fourth assumption concerns the relation between different norms in X. 

Assumption 4. Assume that there exist q, cl > 0 such that, for all x, z E Q 
and EeX, 

(3.9) ||E|lx, z < [ 1 + cl c(x, Z)q] IJEll 

(3.10) IjEII < [1 + cl o(x, Z)q ]jjEjjx z* 

The following lemma, a Bounded Deterioration Principle (see [4, 10, 11, 13, 
14]), states that the distance between Pxz(E) and E* cannot be much larger 
than the distance between E and E* . 

Lemma 3.1. Let F, (p, V, and E* satisfy Assumptions 1 to 4. Then there exist 
positive constants c3, c4 such that for all x, z E Q and E E X, 

(3.11) lIPxz(E) - E* 11 < [1 + C4a(X, Z)q] E - E* 1I + C3a(X, Z)p 

Proof. By (3.10), we have 

(3.12) IIPxz(E) - E*II < [1 + c1o(x, Z)q]jjPxz(E) - E* lX z 

Let E be the orthogonal projection of E* on V(x, z), related to the norm 
11. Then, by (3.12), 

(3.13) IlPxz(E) - E*1 +Xcz((x,Z)q][ffpx(E) -Ellx z+E- E*IlxzI. 
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But Pxz is a projection on V, and E e V. So, 

(3.14) iIPxz(E) -Elx z< IIE-Elx, z< IIE-E* llx,z + IE E* lx,z. 
Hence, by (3.9), (3.13), and (3.14), 

IlPxz(E) - E* I < [1 + cl (x, Z)q][E - E* lX z + 2IEL - E* lix z] 

< [1 +cla(x, z)q]2 [IIE-E* 11 +21E- E* 11]. 

Now, by Assumption 3, lIE - E* I ?< C2a(X, z)' . Therefore, 

IIPxz(E) - E*11 < 
[1 + cl o(x, z)q]2 [lIE - E*11 + 2c2o(x, z)P] 

=I[ + 2c U(X, Z)q + Cl20(X, Z)2q] IIE - E* 

+ 2[1 + cl (x, Z)q] C2a(X Z)p 
Thus, setting 

(3.15) di =sup{Ix-x*IIxeQ}, 

we have 
IIPxz(E) -E11 < [1 + (2c + c2d )a(x, Z)q]E - E*I 

+2[1 +c d1 ]2cr(x, z) . 

So, (3.11) follows with c3 = 2[1 + cd ]2c2, c4 = 2c + c2d . o 
Corollary 3.1. Let s = min{p, q}. There exists c5 > 0 such that 

(3.16) IlPxz(E) -E 11 < IE - E*II + cIx - x* Is 

whenever x, z E Q , E E X, and Iz - x* I < Ix - x* I. 
Proof. Let us define d1 as in (3.15) and d2 = sup{IIE-E* 11, E eY}. Then, 
by (3.11), 

(3.17) II Pxz(E) - E*II ? [1 + C4jX 
_ 

X*lqI]IIE- E*II + c3IX -X*1P 
(3. l 7) ~~~~< tII E- E11 + C4d2IX- X1I + C3 1X X*IP 

Thus, the desired result follows in a straightforward way from (3.17). o 

Now, we are able to prove a local convergence theorem for Algorithm 2.1. 
Recall the definition of the "Newton point" 

xk xk J( k)-iF k) 

Theorem 3.2. Let F, (0, V, and E* satisfy Assumptions 1 to 4, assume that 
{xk} is defined by Algorithm 2.1, and let r1 E (r*, 1) . Then there exist e = 

6(rl), 5 = c(rl), and c6 > O such that, if IxO - x* I <?e and IIEo - E* II < ? Jthe 

sequence generated by Algorithm 2.1 is well defined, andfor all k = 0, 1, 2, ... 

ixk+l - * 
< rlIx kx* . 

Moreover, for all k, j = 0, 1, 2, ... 

IIEk+j - E* II ? lEk - E* 11 + c6lxk - x I, 

where s = min{p, q}. 
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Proof. Set r E (r*, r1), and suppose that Q and X are as in Theorem 3.1. 
Let , 3, E > 0 be such that 

(3.18) {EeXIIIE- E*jj ?< } c.jX, 
(3.19) 3 + c $/(1 -r) < 

and 

(3.20) Be =f{xERn, IX x*I <?e} C Q . 

Moreover, assume that e is small enough so that x - J(x)Y1F(x) is well 
defined for all x E B,, and 

(3.21) IX - J(x)-'F(x) - X*I < 12 IX - X* 1 

Of course, the existence of an e which satisfies (3.21) is guaranteed by the 
local convergence results of Newton's method [13, 35, 40], but it also follows 
easily as a corollary of Theorem 3.1. 

Let us prove that for all k = 0, 1, 2,... 
j) k , k k+1 

(i) XQ, XN, x are well defined, 

(ii) XQ-X | < rix 
k 

x*I, 

(iii)~ |+1_X*I < rll _k *l 
(3.22) (iv) Ixk+1 - X* j < rk+l1 e 

(v) IIEk+l -E* | < + CS EJ=o rK 
(vi) IIEk+j - E* I < IEk - E* 11 

+C Ixk _ X* Is 4j- rsl for all j=0, 1, 2, 
We prove (i)-(v) by induction on k. 
By (3.18) and (3.19), IJEo - E*II < ? implies that Eo E&X, and, by (3.20), 

x 0E Q2. Therefore, by Theorem 3.1, X 4is well defined and satisfies 

(3.23) IxQ - x*I < rlx0 - X*I. 

On the other hand, by (3.21), x? is well defined, and 

IXN X 2 Ix x 1. 

Thus, by (2.4) and (3.23), 

Ix 1 I < |X - XN I + |X - X I 
< X-N| + |X- | I |XQ -X 2|N- | 

< rlx - x*l+(rl - r)lx- x*l = rllx - x*l < r1e. 

Therefore, by Corollary 3.1, 

lIE1E - E <ll IF-E ll +c5Ex0 - 
s < 3 +c5e . 
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Hence, the thesis is true for k = 0. 
Assume now the inductive hypothesis for k - 1 . Thus, 

k-i 

IIEk- E*II ?3ceE rs {lE - ||< (5 + C58S 
j=0 
00 S 

< + c5s E r>Z <J? + 51 < 
j=0lrs 1 

So, by (3.18), EkE X/. 

But, by the inductive hypotheses, Ixk - x*I < r4ke < , so xkE Qe 

Hence, by Theorem 3.1, x kis well defined, and 

X- x I< rlx _-X I 

Finally, we deduce that 
k?1 * k+1 

ix -X I < rrIx _-x I <?rl 

and 
k 

IIEk+l-E E | ?5+C ZrE 
j=0 

using the same arguments as in the case k = 0. Therefore, (i)-(v) are proved 
forall k=0, 1,2,.... 

Let us prove (vi) by induction on j. For j = 0, the result is trivial, using 
the convention 0l . =0. 

Suppose now the assertion is true for j - 1. 
By (3.16), we have 

IIEk+j - E*11 < IIEk+j_ - E*11 + k+j 1 - 51Is. 

Hence, using the inductive hypotheses, 

k _ j-2Xk j I Is 
(3.24) IIEk+-E1 < E IEk | - E*II + c - Is _ rs X . 

1=0 

Now, by (iii), 
ixk+j-1 _ X Is < rs(j )Xk X* S 

Thus, (vi) follows from (3.24). 
Therefore, by (vi), 

C5 lxk - x*IS 
IIEk+j - E* 11 < IEk - E* 11 + 1 

and the last inequality in the assertion follows with c6 = C5/(1 - rs). O 

Corollary 3.2. There exists c7 > 0 such that, for all k, j = 0, 1, 2, ... 

(3.25) IIEk+j-E* 112< IIEk -E* 112 +C71Xk- xs. 
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Proof. Trivial, using Theorem 3.2 and the boundedness of IIEk - E* I and 

Ix -x | ? 

Theorem 3.3. Under the assumptions of Theorem 3.2, 

,lim IIEk+l -EkII =0 . 

Proof. Suppose the assertion is not true. Then there exists an infinite set K1 
of indices such that 

IIEk+l -EkII ?Y >0 

for all k E K1 . Hence, by (3.10), 

[1 + c a(x , xQ) ]IIEk+l -EkIlk > y 

for k E K1 . Thus, for k large enough and k e K1, 

IIEk+l -EkIIk > y/2. 

So, 

(3.26) 2|k1Ek Y2 /4 

for k belonging to an infinite set K2 of indices. 
Let E and 1k be the projections of E* on V(xQ, XQ) related to the norms 

* 11 and 11 * Ilk, respectively. 
By (3.8), and Theorem 3.2, we have 

IIE-E*11?c2Ixk XP. 

Thus, by (3.9), 

wEit c--(lIk <(+CIIX -x |x -x 

< (I + C1,6 )C21X -X _ | 1 = c81X k-x |1 

with C 8 = (I1 + C18 q)C2 

Therefore, by the definition of Ek, 

k *p 
(3.27) 115k - E* Ilk < c8Ix -x X 

and, consequently, 

(3.28) IIEk- E* lk < C2Xk -X |2p 

Let k E K2. By (3.28) and the Pythagorean Theorem we have 

IIEk+-E ||* = IEk+l- Ek lk + IIEk- E* Ik 

? IlEk+l -Ek Ilk + - I+ C8 
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So, by (3.26), (3.27), and (3.9), 

2 2 + c2 * k _p2 ~2 k * 

||Ek+j -E Ilk < ||Ek -Ekllk- C81- 

< (IIEk-E*Ik + cEI -xElk) -4 +C c8Ix -x l 
Il E|k k IlkX -X |82 C|k * 

2~~~~~~~~~~ 

= |IEk- E* k +2cXk_Ek E*IpkIx2 - 2IP + 2I2| - 4 

? llEk~E* lik + 2c8(1 + CllX -X~11 | |E*- II Xk -X y' 

+ 2c82Ilxk-x*I2P _ Y 

2~~~~~~~~~~~ 

< |Ek-*E 2p+ Cg|X -X | - 4 

with c9 = 2c8 (1 + c1 Eq)51 + 2c82eP. 
Hence, there exists k such that, for k e K2 and k > k, 

llEk?l - k Ilk jjEk - E 8 4 

So, by (3.9), (3.10), and Theorem 3.2, we have, for large enough k, 

llEk+l - E*2 ||< (1 +cix -x *1 )2 CIX-k EIIk 

+ (1+C2ix X _ X) (HEk+l-E *li-4 ) 
(3.29) < (1+ kcx -x |)2 [(1 +cx -x *)2 I - E*11 - 4 ] 

2 

< IIEE-E* 112 _ k 

for k e K2, k > k. 
Let now kor> k be such that, for all k E K2ad 

(3.30) c7lxk -x -|< 3Y2k 

Define 

K3 ={k eK2Ik?>ko} ={k1, k2, k3,.* ..}, ki < k1+, i =1, 2, 3,.. 

Then, for all j3= 1 2, 3, .T..o, we have, by (3.29), 

(3.31) IIEk?E +-E*112 ? llEk, -E 112 



LOCAL CONVERGENCE THEORY OF INEXACT NEWTON METHODS 159 

Now, by (3.25), (3.30), and (3.31), 

IIEk.1 -E 112 < IIEk,+l - E* 112 + c71x -x xI 

(3.32) 2 2 2 

< IIEkj - E 1 - 6 + 3 =i[Ek. -E* 112 

But (3.32) holds for all j = 1, 2, 3, . Hence, 
2 

(3.33) IlEki -E*121E -E* ll-13Y2 

But (3.33) implies that IIEk - E* 12 < 0 for large enough j, which is a 

contradiction. o 

Corollary 3.3. There holds 

(3.34) lim I(o(x , Ek+l)-((x Ek)I = O. 
k-bo6 

Proof. (3.34) follows from Theorem 3.3 and the uniform continuity of (0 on 
any compact neighborhood of (x*, E*). a 

The following theorem states a Dennis-More-type condition (see [10]) for the 
ideal convergence of a linearly convergent sequence generated by Algorithm 2.1. 

Theorem 3.4. Let F satisfy Assumption 1 and let (p satisfy Assumption 2. As- 
sume that {xk }, generated by Algorithm 2.1, is well defined, and that, for some 
rE(r* ,1),we have 

k k 
IXQ -x I < rix - x I 

for k = O, 1, 2, Assume that 

I [( (Xk , Ek) - (pX* , E*)](XQ- 
k )| 

k3oo 0. 

Then, 

Ixyk_x*I 
(3.36) lim sup Q < r 

and 

Ix -x ** (3.37) limsup k < r*. 

Proof. We write Bk = (o(Xk, Ek), B* = (p(x*, E*). By (3.35), we have 

(3.38) lim Q(I ( )Bk)(x- x) 
k-+oo Ixk - xkI=0 

And, by (3.2), 

(3.39) IF(Xk)-J(X*)(Xk x*)l < MIXk - lp+ 
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Hence, by (3.3), (3.38), and (3.39), we have 

IxQX*I 
k 

_X-B IF(Xk X* I 
xk _X*I x k _X*I 

<Ixk _ -(B*)-1F(xk ) [(B*)- - B,l]F(xk)I 

Ixk X*I xk _X*I 

(3.40) < I(I - (B *) J(x ))(x -X )I + MI(B*)-1 Ixk - x*IP 
Ixk _ X*I 

I[(B* ) 1- B-+]B ) I 
k 

+ k k*X 

I x -x* 

I1(I - (B*['B k)x- xkI 
<?r* +MI(B*)l II Ixk _xlI+ xk) XQ 

Now, by (3.22), 

I(I - (B*)lBk)(x- xk) I(I - (B*)Bk)(x - xk)I Ixk - I 

(3.41) Xk-X*| IXQ-xkI Ixk-x*I 
1(I - (B*)'B k)(X 

k _xk ) 
< (I1 + r) 

1 k(QX) 

Let r2 e (r*, r1) and r3 E (r*, r2). By (3.38), (3.40), and (3.41), we find 
that there exists k E N such that, for all k > ko 

(3.42) Ix- x*I < r3lx -I x I. 

Let ko > ko be such that, for k > koA, by the local convergence results of 
Newton's method, 

(3.43) |XN 
k 

|_xI <r2r3 r2 X3 
k 

x 
N - 2 I 

Then, by (3.42) and (3.43), we have, for k > koA, 

Ixk+I1 k+I1 k Ikkx 
I+l xI < I XNI +IN _XI? < IXQXNI+IXNXI 

< Ix- x*I + 2Ixk-x * < r2Ixk x*I. 

So, the desired result is proved. o 

Corollary 3.4. Under the hypotheses of Theorem 3.4, if r* = 0, we have 

lim Q I = lim Ix -_ x = 

Ixk _X*I Ixk _ X*I 

That is, the sequence converges at a q-superlinear rate. 

Let us now introduce a final assumption in our framework. 
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Assumption 5 represents the fundamental property which defines a secant 
method. It states that the algorithm is making an effort to approximate an 
"ideal" iteration, and not merely trying to avoid excessive deterioration. This 
condition is usually achieved through the classical secant equation (see [13, 
Chapter 8]) if a Lipschitz condition is assumed on J. 

Assumption 5. The sequence generated by Algorithm 2.1 satisfies 

|(k+( , Ek+,)-1(x*, E*)](XQ-xk 
(3.44) lim k 0. k- oo Ix| xkQ-0 

Observe that, if the secant equation 

(xk+ ,Ek+l)(Xk - x = F(x) - F(Xk) 

holds, the statement (3.44) follows clearly from (3.2) and from the local linear 
convergence theorem. Therefore, in spite of its asymptotic form, (3.44) is easily 
verified for many practical algorithms. 

k~~~~ Theorem 3.5. Let { x I be generated by Algorithm 2.1 and let F, p, V,~ E* 
and {x k} satisfy Assumptions I to 5. Then there exist e, 5 > 0 such that, if 
1x0 -x*I < e and IIEo - E*I < , the sequence {xk} converges to x*, 

Pxk- x*I - 

and 
k+1 * 

Ix - xl * 

limsup. < r 
Ixk _x*l 

Proof. It is easy to prove that (3.34) and (3.44) imply (3.35). a 

As a final result of this section, let us prove that the iterative refinement 
procedure may be used as an inner iteration for Algorithm 2.1. 

Proposition 3.1. If e, ? are small enough, the iterative refinement procedure 
(2.8) produces points which satisfy (2.4). 

Proof. Set z* = -J(xk) lF(xk). The sequence {z1} in (2.8) satisfies 

- zI ? z I - I (xk, Ek+1) J(xk)I |zI- I. 

So, the desired result follows, using Assumption 2 and the continuity of (0. o 

4. LOCAL CONVERGENCE OF SOME PARTICULAR ALGORITHMS 

The theory presented in ?3 is of wide applicability. Most quasi-Newton al- 
gorithms for nonlinear systems of equations, unconstrained minimization, and 
nonlinear least squares problems may be analyzed within this framework. Al- 
gorithms 2.2, 2.3, and 2.4 were selected as typical examples to illustrate the fact 
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that the abstractions used to define the model Algorithm 2.1 have a practical 
motivation. For example, X is not Rnxn in Algorithms 2.2 and 2.3, (0 depends 
explicitly on x in Algorithm 2.4, r* may be different from 0 in Algorithm 2.2, 
etc. 

We will now apply the results of ?3 to the Algorithms 2.2, 2.3, and 2.4. We 
show that Algorithms 2.3 and 2.4 are locally and superlinearly convergent and 
that Algorithm 2.2 converges at the ideal rate. 

Theorem 4.1. In addition to hypotheses (a)-(b) of ?2.2, assume that F satisfies 
Assumption 1 and 

(4.1) II -N(x ) J(x*)l < r* < 1. 

(Observe that, according to [35, Theorem 2.2.8] assumption (4. 1) holds for some 
suitable norm I * I if and only if I - N(x*)-1 J(x*) has a spectral radius less 
than 1.) 

Assume, further, that, for all x e Q, 

(4.2) kS (x) - vW (x*)I < c2 Ix - x* 

(4.3) IS(x) - R(X*)I < c/ix - x*IP. 

Then there exist e, 3 > 0 such that, if Ix0 - x*I < e, IAO - -9(x*)I < 3, 
and IRO - M(x*)l < 3, the sequence defined by Algorithm 2.2 is well defined, 
converges to x* , and satisfies 

i Ix k?l - x'j* 
limsup < r 

Proof. Define 
E = (A*, R) = (5V(x*), M(x*)). 

Then, Assumption 2 is a direct consequence of (4.1). 
Since (.v(x), M(x)) e V(x, z) for all x, z E Q, Assumption 3 follows 

from (4.2) and (4.3). Assumption 4 is clearly satisfied. 
Now, ((xk+l , Ek+l)(Xk - xk) = N(x k)(x - xk) by the definition of 

V(x, z). So, Assumption 5 follows from the continuity of N. Therefore, 
the proof follows by applying Theorem 3.5. o 

Theorem 4.2. Let F satisfy Assumption 1. Define GI ..., Gm as in the begin- 
ning of ?2.3. Assume that Gi satisfies a Lipschitz condition 

(4.4) 1 Gi (Wix) - Gi (JWJx*) I < Li Ix - x*I 

for all x e Q, i = 1, ...-, m'. 

Then, there exist e, > 0 such that, if IxO-x*I < e and IB2?-G'(J4x*) < ?, 
i ,...,m, the sequence defined by Algorithm 2.3 converges to x* at a q- 
superlinear rate. 

Proof. Define 

E* = {B. B A = (GI WI x Gm ( f {x 
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Then, Assumption 2 holds with r* = 0. Clearly, Assumption 4 is trivially 
satisfied. 

Now, 

F1 (z) - Fi (x) = [I F' (x + t(z - x)) dtl (z - x) 

U1 {j Gi[Wi(x + t(z - x))] dt} J?(z - xz). 

Hence, 

E= (j I G[[W(x+t(z -x))]dt j Gm[Wm(x+ t(z-x))]dt) 

E V(x, z). 

Thus, Assumption 3 follows easily using (4.4). 
Finally, the definition of Bk+I guarantees that ((x k+, E )(xk+ - x ) = 

F(xk+l) - F(x k), so that Assumption 5 is also satisfied and thus, the algorithm 
is superlinearly convergent. o 

Theorem 4.3. Assume that F is given by (2.9)-(2. 10) and satisfies Assumption 
1. Moreover, assume that J(x*) and R' (x*)T R'(x*) are positive definite and 

(4.5) JR' (X) TR (x) - R (x* ) TR(x* Il < M Ix - xI 

for all x E Q. 
Define 

E = J(x*) - _ [R (x*) R (x*)] 

Then, there exist e, ( > 0 such that, if Ix0 - x*I < e and lEO - E*I < , the 
sequence defined by Algorithm 2.4 converges to x* at a q-superlinear rate. 
Proof. By the definition of E* it is clear that Assumption 2 is satisfied with 
r = =0. 

We define lIEII = ILTLEL* "F' where L*LT is the Cholesky factorization of 
J(x*). 

Now, examining the steps of the classical algorithm for the Cholesky factor- 
ization, we verify that each coefficient of L is a Cl-function of the coefficients 
of the factored matrix. This observation, together with (3.1), leads to 

IL(x, z)- L*1 < Ku(x, z)p, 

and, thus, to Assumption 4 with q = p. 
Define 

E P [J(x + t(z -x)) dt]- l-[R' (Z) TR(z)] l . 

Obviously, E E V(x, z) . Now, using (3.1), (4.5), and Banach's Lemma [17, 
p. 28], we verify that 
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Hence, Assumption 3 follows from (4.6) using the equivalence of norms in 
finite-dimensional linear spaces. 

According to the definition of p and V(x, z), we have 

k+1E k+1 k k?T/ k+i 1 -I 1X k+1 k 
(o(x , Ek+l)(x -x )={[R' (xk+ ) R'(x )] +E+} (x -+ ). 

But 
/ k+l)T -k+l ))-1 k+1 (Xk)] = X k 

[(R(x R'(x )+Ek+l][F(x )F(x)= -x 
therefore 

( (x , Ek+l)(x -x) =F(x )-F(xk), 

and so Assumption 5 follows using (3.2). o 

5. FINAL REMARKS 

In this paper we presented a large family of quasi-Newton methods for solv- 
ing systems of algebraic nonlinear equations, as well as an inexact-Newton ex- 
tension of this family. The convergence proofs in ?3 apply to most known 
quasi-Newton methods in the literature. It is not difficult to recognize these 
methods as members of the family, using, in some cases, their identification 
with least change secant update methods. 

We make one assumption on the function and three assumptions on the algo- 
rithms to guarantee local linear convergence to an isolated solution. According 
to our approach, projections take place in a "parameter space" X, which may 
be different from R Xf. This allows us to cover a broader class of methods 
than the theory of Dennis-Walker [14] does. Clearly, our Assumption 2 cor- 
responds to Assumption 3.5 of [14], and our Assumption 3 plays the role of 
Assumption 3.6 of the Dennis-Walker paper. However, our Assumption 3 is 
not associated with "choice rules" or secant type equations. This fact has a 
theoretical and pedagogical significance, since it shows that linear convergence 
may not be related to the secant approach in potentially useful methods. Our 
Assumption 4 states the relation between the norm used for variable projections 
of the iteration parameters Ek at each stage of the calculation. No assumption 
with this generality is considered in the Dennis-Walker theory. In fact, variable 
norms in [14] are always weighted Frobenius norms defined by a matrix which 
satisfies a secant equation. We do not know if there exist practical methods 
where the norms 11 Ilk are defined in a different way, but we feel that stressing 
the independence of the essential properties of IIl Ilk from the secant approach 
has some theoretical interest. 

In our theory, the secant equation appears only in Assumption 5. Assump- 
tions 1 to 4 are enough to prove not only the linear convergence result, but also 
the key Theorem 3.3. Using this theorem, Assumption 5 and linear convergence, 
we prove convergence at the ideal rate r* (superlinear if r* = 0). 

We think that the main message of the new theory is also implicit in the 
Dennis-Walker theory and in other works on quasi-Newton methods. This is: 
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given a particular class of problems, put all the desirable characteristics of the 
ideal parameter E* in the manifolds V(x, z). The resulting method is proba- 
bly locally linearly convergent and, if some secant type equation is also satisfied, 
ideal convergence may be obtained. 

Finally, as in the Dennis-Walker theory, our convergence results are strictly 
local, not only with respect to x but also with respect to E. The possibility 
of relaxing the condition on Eo and xo through line searches or trust regions 
(see [13, pp. 139-143]) deserves further research. 
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